Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Microbiology & Fermentation Technology
Membrane-bound Sugar Alcohol Dehydrogenase in Acetic Acid Bacteria catalyzes L-Ribulose Formation and NAD-Dependent Ribitol Dehydrogenase is Independent of the Oxidative Fermentation
Osao ADACHIYoshikazu FUJIIYoshitaka ANODuangtip MOONMANGMEEHirohide TOYAMAEmiko SHINAGAWAGunjana THEERAGOOLNapha LOTONGKazunobu MATSUSHITA
Author information
JOURNAL FREE ACCESS

2001 Volume 65 Issue 1 Pages 115-125

Details
Abstract

To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be the enzyme responsible for L-ribulose production in oxidative fermentation by acetic acid bacteria.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2001 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top