Abstract
We investigated the effect of the carbohydrate chain and two phosphate moieties on heat-induced aggregation of hen ovalbumin. The dephosphorylated form of ovalbumin was obtained by treating the original protein with acid phosphatase. The single carbohydrate chain was removed by digestion of heat-denatured ovalbumin with glycopeptidase F, and the resulting polypeptide without this carbohydrate chain was correctly refolded to acquire protease-resistance. Thermal unfolding can be approximated by a mechanism involving a two-state transition between the folded and unfolded states with a midpoint temperature of 76 °C for the original form, of 74 °C for the dephosphorylated form, and of 71 °C for the carbohydrate-free form. The conformational stability of the original form was higher than that of the carbohydrate-free form. When the three forms of ovalbumin were heated to 80 °C and then cooled rapidly in an ice bath, the polypeptide chains were compactly collapsed to metastable intermediates with secondary structures whose properties were indistinguishable. Upon incubation at 60 °C, renaturation was possible for a large portion of the intermediates of the original form, but for only a small portion of those of the carbohydrate-free form. Light scattering experiments showed that in the presence of sulfate anions, the intermediates of the carbohydrate-free form aggregated to a greater extent than did those of the original form. The intermediates of the carbohydrate-free form bound to the chaperonin GroEL with about 10-fold higher affinity than those of the original form. It follows that the carbohydrate chain and the two phosphate moieties do not affect hydrophobic collapse in the kinetic refolding of hen ovalbumin but play an important role in the slow rearrangement. They block the off-pathway reaction that competes with correct refolding by effectively decreasing surface hydrophobicity.