Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Induction of a Ribotoxic Stress Response That Stimulates Stress-Activated Protein Kinases by 13-Deoxytedanolide, an Antitumor Marine Macrolide
Kun-Hyung LEEShinichi NISHIMURAShigeki MATSUNAGANobuhiro FUSETANIHidenori ICHIJOSueharu HORINOUCHIMinoru YOSHIDA
Author information
JOURNALS FREE ACCESS

2006 Volume 70 Issue 1 Pages 161-171

Details
Abstract

13-Deoxytedanolide is a structurally unique macrolide with strong antitumor activity isolated from a marine sponge. Recently, we showed that 13-deoxytedanolide bound to the large subunit of the yeast ribosome and inhibited polypeptide elongation in vitro, but the mechanism by which it exerts antitumor activity is still unknown. Here we show that 13-deoxytedanolide strongly induces plasminogen activator inhibitor 1 (PAI-1) promoter-derived gene expression. 13-Deoxytedanolide, unlike TGF-beta, did not cause apparent nuclear translocation of Smad2/3, but it relocalized the temperature-sensitive mutant of mouse p53 (p53Val153) from the cytoplasm to the nucleus at a nonpermissive temperature, suggesting that 13-deoxytedanolide inhibits protein synthesis. Indeed, the drug inhibited in vivo protein synthesis at low nanomolar concentrations and strongly activated stress-activated protein kinases such as p38 mitogen-activated protein kinase and Jun NH2-terminal protein kinase (JNK). Anisomycin, a well-known inducer of ribotoxic stress that activates both p38 and JNK, also activated PAI-1 gene expression, while other protein synthesis inhibitors that do not activate the kinases failed to do so. PAI-1 gene expression by 13-deoxytedanolide and anisomycin was blocked by SB202190, a specific inhibitor of p38, and SP600125, an inhibitor of both p38 and JNK. 13-Deoxytedanolide and anisomycin caused activation of apoptosis signal-regulating kinase 1, MKK3/MKK6, and SEK1/MKK4, the regulatory kinases upstream of p38 and JNK. These results suggest that 13-deoxytedanolide, like anisomycin, triggers a ribotoxic stress response that activates stress-activated protein kinase cascades, thereby inducing PAI-1 gene expression and apoptosis.

Information related to the author

This article cannot obtain the latest cited-by information.

© 2006 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top