Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Microbiology & Fermentation Technology Regular Papers
Production of (R)-3-Amino-3-phenylpropionic Acid and (S)-3-Amino-3-phenylpropionic Acid from (R,S)-N-Acetyl-3-amino-3-phenylpropionic Acid Using Microorganisms Having Enantiomer-Specific Amidohydrolyzing Activity
Hisashi KAWASAKIKoutaro KOYAMASachio KUROKAWAKunihiko WATANABEMasakazu NAKAZAWAKunisuke IZAWATsuyoshi NAKAMATSU
Author information
JOURNAL FREE ACCESS

2006 Volume 70 Issue 1 Pages 99-106

Details
Abstract

(R)-3-Amino-3-phenylpropionic acid ((R)-β-Phe) and (S)-3-amino-3-phenylpropionic acid ((S)-β-Phe) are key compounds on account of their use as intermediates in synthesizing pharmaceuticals. Enantiomerically pure non-natural amino acids are generally prepared by enzymatic resolution of the racemic N-acetyl form, but despite the intense efforts this method could not be used for preparing enantiomerically pure β-Phe, because the effective enzyme had not been found. Therefore, screening for microorganisms capable of amidohydrolyzing (R,S)-N-acetyl-3-amino-3-phenylpropionic acid ((R,S)-N-Ac-β-Phe) in an enantiomer-specific manner was performed.
A microorganism having (R)-enantiomer-specific amidohydrolyzing activity and another having both (R)-enantiomer- and (S)-enantiomer-specific amidohydrolyzing activities were obtained from soil samples. Using 16S rDNA analysis, the former organism was identified as Variovorax sp., and the latter as Burkholderia sp. Using these organisms, enantiomerically pure (R)-β-Phe (>99.5% ee) and (S)-β-Phe (>99.5% ee) with a high molar conversion yield (67%–96%) were obtained from the racemic substrate.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2006 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top