Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Cloning, Sequencing, and Expression of the Genes Encoding an Isocyclomaltooligosaccharide Glucanotransferase and an α-Amylase from a Bacillus circulans Strain
Hikaru WATANABETomoyuki NISHIMOTOMichio KUBOTAHiroto CHAENShigeharu FUKUDA
著者情報
ジャーナル フリー

2006 年 70 巻 11 号 p. 2690-2702

詳細
抄録
The gene for a novel glucanotransferase, isocyclomaltooligosaccharide glucanotransferase (IgtY), involved in the synthesis of a cyclomaltopentaose cyclized by an α-1,6-linkage [ICG5; cyclo-{→6)-α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→}] from starch, was cloned from the genome of B. circulans AM7. The IgtY gene, designated igtY, consisted of 2,985 bp encoding a signal peptide of 35 amino acids and a mature protein of 960 amino acids with a calculated molecular mass of 102,071 Da. The deduced amino-acid sequence showed similarities to 6-α-maltosyltransferase, α-amylase, and cyclomaltodextrin glucanotransferase. The four conserved regions common in the α-amylase family enzymes were also found in this enzyme, indicating that this enzyme should be assigned to this family. The DNA sequence of 8,325-bp analyzed in this study contained two open reading frames (ORFs) downstream of igtY. The first ORF, designated igtZ, formed a gene cluster, igtYZ. The amino-acid sequence deduced from igtZ exhibited no similarity to any proteins with known or unknown functions. IgtZ was expressed in Escherichia coli, and the enzyme was purified. The enzyme acted on maltooligosaccharides that have a degree of polymerization (DP) of 4 or more, amylose, and soluble starch to produce glucose and maltooligosaccharides up to DP5 by a hydrolysis reaction. The enzyme (IgtZ), which has a novel amino-acid sequence, should be assigned to α-amylase. It is notable that both IgtY and IgtZ have a tandem sequence similar to a carbohydrate-binding module belonging to a family 25. These two enzymes jointly acted on raw starch, and efficiently generated ICG5.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2006 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
前の記事 次の記事
feedback
Top