Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Suppression of AGE Precursor Formation Following Unilateral Ureteral Obstruction in Mouse Kidneys by Transgenic Expression of α-Dicarbonyl/L-Xylulose Reductase
Jun ASAMIHiroko ODANIAiko ISHIIKayoko OIDETakako SUDOAtsushi NAKAMURANoriyuki MIYATANoboru OTSUKAKenji MAEDAJunichi NAKAGAWA
Author information
JOURNAL FREE ACCESS

2006 Volume 70 Issue 12 Pages 2899-2905

Details
Abstract
Unilateral ureteral obstruction (UUO) of kidneys causes acute generation of carbonyl stress. By electrospray ionization/liquid chromatography/mass spectrometry (ESI/LC/MS) we measured the content of methyl glyoxal, glyoxal, and 3-deoxyglucosone in mouse kidney extracts following UUO. UUO resulted in elevation of these dicarbonyls in the obstructed kidneys. Furthermore, the accumulation of 3-deoxyglucosone was significantly reduced in the kidneys of mice transgenic for α-dicarbonyl/L-xylulose reductase (DCXR) as compared to their wild-type littermates, demonstrating 4.91±2.04 vs. 6.45±1.85 ng/mg protein (P=0.044) for the obstructed kidneys, and 3.68±1.95 vs. 5.20±1.39 ng/mg protein (P=0.026) for the contralateral kidneys. On the other hand, collagen III content in kidneys showed no difference as monitored by in situ hybridization. Collectively, DCXR may function in the removal of renal α-dicarbonyl compounds under oxidative circumstances, but it was not sufficient to suppress acute renal fibrosis during 7 d of UUO by itself.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2006 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top