Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Occurrence of Agmatine Pathway for Putrescine Synthesis in Selenomonas ruminatium
Shaofu LIAOPhuntip POONPAIROJKyong-Cheol KOYumiko TAKATUSKAYoshihiro YAMAGUCHINaoki ABEJun KANEKOYoshiyuki KAMIO
Author information
JOURNAL FREE ACCESS

2008 Volume 72 Issue 2 Pages 445-455

Details
Abstract
Selenomonas ruminantium synthesizes cadaverine and putrescine from L-lysine and L-ornithine as the essential constituents of its peptidoglycan by a constitutive lysine/ornithine decarboxylase (LDC/ODC). S. ruminantium grew normally in the presence of the specific inhibitor for LDC/ODC, DL-α-difluoromethylornithine, when arginine was supplied in the medium. In this study, we discovered the presence of arginine decarboxylase (ADC), the key enzyme in agmatine pathway for putrescine synthesis, in S. ruminantium. We purified and characterized ADC and cloned its gene (adc) from S. ruminantium chromosomal DNA. ADC showed more than 60% identity with those of LDC/ODC/ADCs from Gram-positive bacteria, but no similarity to that from Gram-negative bacteria. In this study, we also cloned the aguA and aguB genes, encoding agmatine deiminase (AguA) and N-carbamoyl-putrescine amidohydrolase (AguB), both of which are involved in conversion from agmatine into putrescine. AguA and AguB were expressed in S. ruminantium. Hence, we concluded that S. ruminantium has both ornithine and agmatine pathways for the synthesis of putrescine.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2008 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top