Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Microbiology & Fermentation Technology Regular Papers
Purification and Characterization of Membrane-Bound 3-Dehydroshikimate Dehydratase from Gluconobacter oxydans IFO 3244, A New Enzyme Catalyzing Extracellular Protocatechuate Formation
Emiko SHINAGAWAOsao ADACHIYoshitaka ANOToshiharu YAKUSHIKazunobu MATSUSHITA
Author information
JOURNAL FREE ACCESS

2010 Volume 74 Issue 5 Pages 1084-1088

Details
Abstract
3-Dehydroshikimate dehydratase (DSD) is the first known enzyme catalyzing aromatization from 3-dehydroshikimate (DSA) to protocatechuate (PCA). Differently from cytosolic DSD (sDSD), a membrane-bound 3-dehydroshikimate dehydratase (mDSD) was found for the first time in the membrane fraction of Gluconobacter oxydans IFO 3244, and DSA was confirmed to be the direct precursor of PCA. In contrast to weak and instable sDSD, the abundance of mDSD in the membrane fraction suggested the metabolic significance of mDSD as the initial step in aromatization. mDSD was solubilized only by a detergent and was readily purified to high homogeneity. Its molecular weight was estimated to be 76,000. Purified mDSD showed a sole peak at 280 nm in the absorption spectrum and no critical cofactor requirements. The Km of DSA was measured at 0.5 mM, and the optimum pH was observed at pH 6–8. mDSD appeared to react only with DSA, and was inert to other compounds, such as 3-dehydroquinate, quinate, and shikimate.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2010 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top