Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Identification and Conformer Analysis of a Novel Redox-Active Motif, Pro-Ala-Ser-Cys-Cys-Ser, in Drosophila Thioredoxin Reductase by Semiempirical Molecular Orbital Calculation
Mitsuhiko KUWAHARATakashi TAMURAKentaro KAWAMURAKenji INAGAKI
Author information
JOURNAL FREE ACCESS

2011 Volume 75 Issue 3 Pages 516-521

Details
Abstract
Mammalian thioredoxin reductases (TrxRs) contain selenium as selenocysteine (Sec) in the C-terminal redox center –Gly-Cys-Sec-Gly-OH to reduce Trx and other substrates; a Sec-to-Cys substitution in mammalian TrxR yields an almost inactive enzyme. The corresponding tetrapeptide sequence in Drosophila melanogaster TrxR (Dm-TrxR), –Ser-Cys-Cys-Ser-OH, endows the orthologous enzyme with a catalytic competence similar to mammalian selenoenzymes, but implementation of the Ser-containing tetrapeptide sequence SCCS into the mammalian enzyme does not restore the activity of the Sec-to-Cys mutant form (turnover number <2/min). MOPAC calculation suggested that the C-terminal hexapeptide Pro-Ala-Ser-Cys-Cys-Ser-OH functions as a redox center that alleviates the necessity for selenium in Dm-TrxR, and a mutant form of human lung TrxR that mimics this hexapeptide sequence showed improved catalytic turnover (17.4/min for DTNB and 13.2/min for E. coli trx) compared to the Sec-to-Cys mutant. MOPAC calculation also suggested that the dominant form of the Pro-containing hexapeptide is a C+ conformation, which perhaps has a catalytic advantage in facile reduction of the intramolecular disulfide bond between Cys497 and Cys498 by the N-terminal redox center in the neighboring subunit.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2011 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top