Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Molecular and Catalytic Properties of Monoacetylphloroglucinol Acetyltransferase from Pseudomonas sp. YGJ3
Asuka HAYASHIHiroki SAITOUTomomi MORIIkue MATANOHiroyuki SUGISAKIKiyofumi MARUYAMA
Author information
JOURNAL FREE ACCESS

2012 Volume 76 Issue 3 Pages 559-566

Details
Abstract
Monoacetylphloroglucinol (MAPG) acetyltransferase, catalyzing the conversion of MAPG to 2,4-diacetylphloroglucinol (DAPG), was purified from Pseudomonas sp. YGJ3 grown without Cl. Cl and pyoluteorin repressed expression of the enzyme. SDS-polyacrylamide gel electrophoresis showed that the purified enzyme (Mr=330 kDa) was composed of three subunits of 17, 38, and 43 kDa, and protein sequencing identified these as PhlB, PhlA, and PhlC respectively. The enzyme catalyzed the reversible disproportionation of 2 moles of MAPG to phloroglucinol (PG) and DAPG. The equilibrium constant K (=[DAPG][PG]/[MAPG]2) was estimated to be about 1.0 at 25 °C. A KpnI 20-kb DNA fragment was cloned from the genomic DNA of strain YGJ3, and a 12,598-bp long DNA region containing the phl gene cluster phlACBDEFGHI was sequenced. PCR cloning and expression of the phl genes in Escherichia coli confirmed that expression of phlACB genes produced MAPG ATase.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2012 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top