Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Mechanisms of the Selenium Tolerance of the Arabidopsis thaliana Knockout Mutant of Sulfate Transporter SULTR1;2
Misao OHNOMisugi URAJIYasuaki SHIMOISHIIzumi C. MORIYoshimasa NAKAMURAYoshiyuki MURATA
著者情報
ジャーナル フリー

2012 年 76 巻 5 号 p. 993-998

詳細
抄録
We investigated the mechanism of selenium (Se) tolerance using an Arabidopsis thaliana knockout mutant of a sulfate transporter, sultr1;2. Se stress inhibited plant growth, decreased chlorophyll contents, and increased protein oxidation and lipid peroxidation in the wild type, whereas the sultr1;2 mutation mitigated damage of these forms, indicating that sultr1;2 is more tolerant of Se than the wild type is. The accumulation of symplastic Se was suppressed in sultr1;2 as compared to the wild type, and the chemical speciation of Se in the mutant was different from that in the wild type. Regardless of Se stress, the activities of ascorbate peroxidase, catalase, and peroxidase in the mutant were higher than in the wild type, while the activity of superoxide dismutase in the mutant was the same as in the wild type. These results suggest that the sultr1;2 mutation confers Se tolerance on Arabidopsis by decreasing symplastic Se and maintaining antioxidant enzyme activities.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2012 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
前の記事 次の記事
feedback
Top