Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451

This article has now been updated. Please use the final version.

Biosynthesis of Indolocarbazole and Goadsporin, Two Different Heterocyclic Antibiotics Produced by Actinomycetes
Hiroyasu ONAKA
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 90263

Details
Abstract
The biosynthesis of staurosporine, rebeccamycin, and goadsporin, which are produced by actinomycetes and contain characteristic heterocyclic rings, was characterized by genetic methods. Staurosporine and rebeccamycin contain an indolocarbazole ring synthesized from two molecules of tryptophan, with indolepyruvic acid imine and chromopyrrolic acid as biosynthetic intermediates. A tetrameric hemoprotein synthesizes chromopyrrolic acid, and cytochrome P450 peroxidase catalyzes the intramolecular C–C coupling and decarboxylation of chromopyrrolic acid to form the indolocarbazole core. Goadsporin is a thiopeptide containing thiazole and oxazole heterocyclic rings. The structural gene godA is ribosomally translated to a goadsporin precursor peptide, and oxazole, methyloxazole, and thiazole rings are derived from serine, threonine, and cystein through post-translational modifications. On the basis of these knowledges, a wide variety of indolocarbazole and goadsporin analogs through the rational gene recombination and disruption of these biosynthetic genes were successfully produced.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2009 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
feedback
Top