Biophysics and Physicobiology
Online ISSN : 2189-4779
ISSN-L : 2189-4779
Regular Article
DNA-binding function of c-Myb R2R3 around thermal denaturation temperature
Maki KawasakiMasayuki Oda
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
J-STAGE Data Supplementary material

2021 Volume 18 Pages 78-84

Details
Abstract

The minimum DNA-binding domain of the transcrip­tional factor c-Myb R2R3 remarkably fluctuates in the solution. In the present study, we evaluated the protein fluctuation of R2R3 C130I mutant, R2R3*, on its DNA-binding and folding thermodynamics. DNA-binding analysis using isothermal titration calorimetry revealed that the heat capacity change determined from the correlation between temperature and binding enthalpy change is highly negative above 35°C, indicating that the fluctuation increases with increasing temperature and elevates the conformational change on DNA binding. The results were in accordance with those of differential scanning calorimetry, which revealed that the heat capacity corresponding to thermal denatu­ration gradually increased above 35°C, followed by the broad transition peak. In contrast, the transition peak of R2R3* in the DNA-bound state was sharper and larger than that in the DNA-unbound state. The fluctuating form could transform into lesser fluctuating form upon DNA binding, resulting in a larger enthalpy change for denaturation of R2R3* in the DNA-bound state. It should also be noted that R2R3* could specifi­cally bind to DNA around thermal denaturation temperature. This would be due to proteins with numerous fluctuations. Moreover, we discuss specific and non-specific DNA binding accompanied by the conformational change between well-ordered and disordered forms of R2R3* observed around the denaturation temperature.

Fullsize Image
Content from these authors
© 2021 THE BIOPHYSICAL SOCIETY OF JAPAN
Previous article Next article
feedback
Top