応用数理
Online ISSN : 2432-1982
論文
位相的データ解析と機械学習への応用
池 祐一
著者情報
ジャーナル フリー

2022 年 32 巻 3 号 p. 139-148

詳細
抄録

The recent applications of topological data analysis in machine learning are reviewed in this paper. Simplicial and persistent homology were briefly explained and then two such applications were described. The first application is a topological study of the activation of neural networks, and the second application is a convergence result for the stochastic subgradient method for topological loss functions.

著者関連情報
© 2022 日本応用数理学会
前の記事 次の記事
feedback
Top