抄録
Construction of spinning Julia-Zee dyon solution in the SO (3) Yang-Mills-Higgs system is attempted by employing the exact Kerr-Newman dyon solution in the curved space-time as a boundary condition at the infinity. To obtain nonzero spin S both the electric and magnetic fields are needed and the system becomes a dyon. The exact Kerr-Newman dyon solution in the limit G → 0 (G : the gravitational constant) has singularities at a ring of radius a = S/M (M : mass of the dyon) on the equatorial plane, and regularization of this solution is discussed by the introduction of appropriate form factors. A system of partial differential equations for these form factors is derived and the spherical Bogomolny-Prasad-Sommerfield solution is obtained in the limit a → 0 and the Prasad-Sommerfield limit.