Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Improving the Stability of Short Hairpin RNA against Fetal Bovine Serum Using the Third Double-Stranded RNA-Binding Domain from Staufen Protein
Yasuhisa KawaguchiKazumi DanjoTomoyuki OkudaHirokazu Okamoto
Author information
JOURNAL FREE ACCESS

2009 Volume 32 Issue 2 Pages 283-288

Details
Abstract
RNA interference (RNAi) is a technology that specifically inhibits gene expression and is carried out by small 21–27-nucleotide double-stranded small interfering RNA (siRNA) or short hairpin RNA (shRNA). RNAi has become a very promising technology for genetic research, however problems remain with the delivery of siRNA into cells. SiRNA and shRNA are easily degraded by RNases in body fluids and are hardly able to permeate cell membranes because of hydrophilic, polyanionic macromolecules which make their bioavailability very low. We have focused on the third double-stranded RNA-binding domain (dsRBD3) from the Mus musculus Staufen protein in order to develop a non-viral, multifunctional, artificial virus-like delivery system. We constructed a dsRBD3 expression vector and the recombinant dsRBD3 was expressed as a fusion protein with affinity tags. Purified dsRBD3 was mixed with siRNA or shRNA at various ratios and then added to fetal bovine serum (FBS) to evaluate the inhibition of the degradation of double-stranded RNA (dsRNA) by RNase. Unexpectedly, dsRBD3 was not able to protect the siRNA against degradation by FBS, but shRNA was stabilized to some degree by dsRBD3.
Content from these authors
© 2009 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top