Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Purslane Suppresses Osteoclast Differentiation and Bone Resorbing Activity via Inhibition of Akt/GSK3β-c-Fos-NFATc1 Signaling in Vitro and Prevents Lipopolysaccharide-Induced Bone Loss in Vivo
Ju-Young KimHyun Mee OhSung Chul KwakYoon-Hee CheonMyeung Su LeeMun Chual RhoJaemin Oh
Author information

2015 Volume 38 Issue 1 Pages 66-74


Purslane (Portulaca oleracea L.) is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region and is widely distributed around the globe. It has a wide range of pharmacological effects, such as antibacterial, anti-aging, anti-inflammatory, and anti-oxidative properties. Although the extract of purslane has numerous beneficial pharmacological effects, its effect on osteoclasts remains unknown. We aimed to investigate the anti-osteoclastogenic activity in vitro and in vivo and to elucidate the underlying mechanism. The effect of purslane on the differentiation and function of bone marrow-derived macrophages (BMMs) into osteoclasts was examined using a phenotype assay such as tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining, and pit assay and followed by confirmation by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. To address the effect of purslane in vivo, the inflammatory, lipopolysaccharide (LPS)-induced osteolysis mouse model was chosen. Bone volume and bone microarchitecture were evaluated by microcomputed tomography and histologic analysis. Purslane inhibited receptor activator of nuclear factor-kappa B ligand (RANKL)-stimulated osteoclast differentiation accompanied by inhibition of Akt/glycogen synthase kinase 3β (GSK3β) signaling, which could underlie purslane-induced downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) expression levels, transcription factors that regulate osteoclast-specific genes, as well as osteoclast fusion and resorption-related molecules. Moreover, in vivo studies further verified the bone protection activity of purslane in the LPS-induced osteolysis animal model. Purslane could exhibit its anti-osteoclastogenic activity by inhibiting Akt/GSK3β-c-Fos-NFATc1 signaling cascades. Therefore, purslane is a potential natural medicine for the treatment of osteoclast-related diseases.

Content from these authors
© 2015 The Pharmaceutical Society of Japan
Previous article Next article