Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Ferulic Acid Ameliorates Isoproterenol-Induced Heart Failure by Decreasing Oxidative Stress and Inhibiting Cardiocyte Apoptosis via Activating Nrf2 Signaling Pathway in Rats
Xi-juan ZhangZhong-hua CuiYan-xin ZhaoTing-ting HeLing Wang Xiu-wen Liang
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2021 Volume 44 Issue 3 Pages 396-403

Details
Abstract

Ferulic acid (FA) has potential therapeutic effects in multiple diseases including cardiovascular diseases. However, the effect and molecular basis of FA in heart failure (HF) has not been thoroughly elucidated. Herein, we investigated the roles and mechanisms of FA in HF in isoproterenol (ISO)-induced HF rat model. Results found that FA ameliorated cardiac dysfunction, alleviated oxidative stress, reduced cell/myocardium injury-related enzyme plasma level, inhibited cardiocyte apoptosis in ISO-induced HF rat models. Moreover, FA reduced the co-localization of Keap1 and nuclear factor-E2-related factor 2 (Nrf2) in heart tissues of ISO-induced HF rats, and FA alleviated the inhibitory effects of ISO on expressions of p-Nrf2, heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (NQO1). Additionally, Nrf2 signaling pathway inhibitor ML385 showed adverse effects. FA weakened the effects of ML385 in ISO-induced HF rat models. Collectively, FA ameliorated HF by decreasing oxidative stress and inhibiting cardiocyte apoptosis via activating Nrf2 pathway in ISO-induced HF rats. Our data elucidated the underling molecular mechanism and provided a novel insight into the cardioprotective function of FA, thus suggested the therapeutic potential of FA in HF treatment.

Graphical Abstract Fullsize Image
Content from these authors
© 2021 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top