Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158

This article has now been updated. Please use the final version.

Transcriptome analysis of PC12 cells reveals that trans-banglene upregulates RT1-CE1 and downregulates abca1 in the neurotrophic pathway
Masaki ShojiRisa OkamotoTaishi UnnoKenichi HaradaMiwa KuboYoshiyasu FukuyamaTakashi Kuzuhara
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: b22-00474

Details
Abstract

Trans(t)-banglene and cis(c)-banglene possess neurotrophin-like activity in rat neurons. However, the molecular mechanisms underlying t-banglene-induced neurotrophic activity in rat and human neurons remain unclear. Here, we performed transcriptome analysis in PC12 cells, a rat adrenal gland pheochromocytoma cell line treated with t-banglene, using comprehensive RNA sequencing. The differentially expressed gene analysis of the sequencing data revealed that the expression of RT1 class I, locus CE1 (RT1-CE1) was upregulated, and that of ATP binding cassette subfamily A member 1 (abca1), myosin light chain 6, and hippocampus abundant transcript 1 was downregulated in t-banglene-treated PC12 cells, with statistically significant differences. We also confirmed the RT1-CE1 upregulation and abca1 downregulation in t-banglene-treated PC12 cells by reverse transcription quantitative real-time polymerase chain reaction. RT1-CEl is a major histocompatibility complex class I (MHCI) protein. ABCAl is a major cholesterol transporter that regulates efflux of intracellular cholesterol and phospholipids. Thus, our results suggest an exciting link between MHCI, cholesterol regulation, and neural development.

Content from these authors
© 2022 The Pharmaceutical Society of Japan
feedback
Top