BioScience Trends
Original Articles
An ethanol extract of Aster yomena (Kitam.) Honda inhibits lipopolysaccharide-induced inflammatory responses in murine RAW 264.7 macrophages
Hye-Joo KangJi-Suk JeongNo-Jin ParkGeun-Bae GoSung Ok KimCheol ParkByung Woo KimSu-Hyun HongYung Hyun Choi
Author information
JOURNALS FREE ACCESS

Volume 11 (2017) Issue 1 Pages 85-94

Details
Download PDF (1607K) Contact us
Abstract

Aster yomena (Kitam.) Honda has been widely used as a traditional herbal medicine for centuries to treat cough, asthma, insect bites, etc. Recent reports indicate that A. yomena possesses a wide spectrum of pharmacological activities; however, few experiments have described its anti-inflammatory properties. The present study examined the anti-inflammatory effects of an ethanol extract of A. yomena leaves (EEAY) on lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. Treatment with EEAY significantly reduced the secretion of pro-inflammatory molecules, such as nitric oxide and interleukin-1β, in LPS-stimulated RAW 264.7 cells, without incurring any significant cytotoxicity. These protective effects were accompanied by a marked reduction in the expression of regulatory genes at the transcription level. Treatment with EEAY also inhibited the DNA-binding activity of nuclear factor-κB (NF-κB) by suppression of nuclear translocation of NF-κB and by degradation of the inhibitor of NF-κB; these effects were associated with suppression of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. The EEAY treatment also potently suppressed LPS-induced toll like receptor (TLR) 4 expression and attenuated the binding of LPS to the macrophage cell surface. In addition, EEAY treatment markedly inhibited LPS-induced accumulation of intracellular reactive oxygen species in RAW 264.7 macrophages. Therefore, the inhibitory effects of EEAY on LPS-stimulated inflammatory responses in RAW 264.7 macrophages were apparently associated with suppression of the TLR-mediated NF-κB signaling pathway. More work is needed to fully understand the critical role and clinical usefulness of EEAY treatment, but the findings of the present study provide some insights into the potential of EEAY as a therapeutic agent for treatment of inflammatory disorders.

Information related to the author
© 2017 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Previous article Next article

Recently visited articles
feedback
Top