IEICE Communications Express
Online ISSN : 2187-0136
ISSN-L : 2187-0136

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Model-based quantization for perceptually weighted compressed video sensing
Sawsan ElsayedMaha ElsabroutyOsamu MutaHiroshi Furukawa
著者情報
ジャーナル フリー 早期公開

論文ID: 2016XBL0071

この記事には本公開記事があります。
詳細
抄録
Exploiting perceptual-based weighting can improve the reconstruction quality for compressed video sensing (CVS). Nevertheless, practical implementation of the compressed sensing (CS) requires quantizing the measurements. We propose a simplified sampling rate model for the perceptual CVS to achieve compromise between the number of measurements and the quantization bit-depth, which are the main contributing factors in the CS rate-distortion (RD) performance. The proposed model can achieve near optimal RD-performance obtained through exhaustive simulations. In addition, simulation results show that the quantized perceptual CVS achieve remarkable RD-performance gain, with lower sampling rate, compared to applying the quantization model on the standard CS.
著者関連情報
© 2016 The Institute of Electronics, Information and Communication Engineers
feedback
Top