IEICE Communications Express
Online ISSN : 2187-0136
ISSN-L : 2187-0136

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

PAM-4 eye-opening monitoring techniques based on Gaussian mixture model fitting
Yasushi YuminakaKeigo TayaYosuke Iijima
著者情報
ジャーナル フリー 早期公開

論文ID: 2020XBL0086

この記事には本公開記事があります。
詳細
抄録

Four-level pulse amplitude modulation (PAM-4) data formats are adopted to achieve next-generation high-speed data transmission standards. In this letter, a novel eye-opening monitoring technique based on machine learning is proposed to evaluate the received signal quality for the adaptive coefficients setting of a transmitter feed-forward equalizer for PAM-4 signaling. The monitoring technique employs a Gaussian mixture model (GMM) to classify the received PAM-4 symbols. Simulation and measured results of the coefficient adjustment using the GMM method are presented.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
feedback
Top