IEICE Communications Express
Online ISSN : 2187-0136
ISSN-L : 2187-0136

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Comparison of Machine Learning and Non-machine Learning Methods for the Sleep Apnea Detection Using Millimeter-wave Radar
Takato KodaTakuya SakamotoShuqiong WuShigeaki OkumuraHirofumi TakiSatoshi HamadaSusumu SatoKazuo Chin
著者情報
ジャーナル フリー 早期公開

論文ID: 2022XBL0050

この記事には本公開記事があります。
詳細
抄録

This study investigated the performance of radar-based detection methods for sleep apnea, by comparing a machine learning approach and a non-machine learning approach. We applied a 79-GHz millimeter-wave multiple-input and multiple-output array radar with 12 virtual array elements and performed radar and polysomnography measurements simultaneously to monitor a sleep apnea patient during overnight inspection in a hospital setting. Both radar-based methods successfully estimated the number of apnea events per hour of sleep, with root-mean-square error values of 4.1 and 4.0, indicating that the two methods had comparable accuracy in the radar-based noncontact monitoring of a sleep apnea patient.

著者関連情報
© 2022 The Institute of Electronics, Information and Communication Engineers
feedback
Top