Cell Structure and Function
Online ISSN : 1347-3700
Print ISSN : 0386-7196
ISSN-L : 0386-7196
Munc13b stimulus-dependently accumulates on granuphilin-mediated, docked granules prior to fusion
Kouichi MizunoTetsuro Izumi
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2022 Volume 47 Issue 1 Pages 31-41

Details
Abstract

The Rab27 effector granuphilin plays an indispensable role in stable docking of secretory granules to the plasma membrane by interacting with the complex of Munc18-1 and the fusion-incompetent, closed form of syntaxins-1~3. Although this process prevents spontaneous granule exocytosis, those docked granules actively fuse in parallel with other undocked granules after stimulation. Therefore, it is postulated that the closed form of syntaxins must be converted into the fusion-competent open form in a stimulus-dependent manner. Although Munc13 family proteins are generally thought to prime docked vesicles by facilitating conformational change in syntaxins, it is unknown which isoform acts in granuphilin-mediated, docked granule exocytosis. In the present study, we show that, although both Munc13a and Munc13b are expressed in mouse pancreatic islets and their beta-cell line MIN6, the silencing of Munc13b, but not that of Munc13a, severely affects glucose-induced insulin secretion. Furthermore, Munc13b accumulates on a subset of granules beneath the plasma membrane just prior to fusion during stimulation, whereas Munc13a is translocated to the plasma membrane where granules do not exist. When fluorescently labeled granuphilin was introduced to discriminate between molecularly docked granules and other undocked granules in living cells, Munc13b downregulation was observed to preferentially decrease the fusion of granuphilin-positive granules immobilized to the plasma membrane. These findings suggest that Munc13b promotes insulin exocytosis by clustering on molecularly docked granules in a stimulus-dependent manner.

Key words: docking, insulin, live cell imaging, priming, TIRF microscopy

Content from these authors
© 2022 The Author(s) CC-BY 4.0 (Submission before October 2016: Copyright © Japan Society for Cell Biology)

Copyright: ©2022 The Author(s). This is an open access article distributed under the terms of the Creative Commons BY (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
https://creativecommons.org/licenses/by/4.0/legalcode
Previous article Next article
feedback
Top