Cell Structure and Function
Online ISSN : 1347-3700
Print ISSN : 0386-7196
ISSN-L : 0386-7196
Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells
Shinji C. NagasakiTomonori D. FukudaMayumi YamadaYusuke III SuzukiRyo KakutaniAdam T. GuyItaru Imayoshi
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2023 Volume 48 Issue 1 Pages 31-47

Details
Abstract

The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms.

Key words: optogenetics, Gal4/UAS system, transcription, gene expression, Vivid

Content from these authors
© 2023 The Author(s) CC-BY 4.0 (Submission before October 2016: Copyright © Japan Society for Cell Biology)

Copyright: ©2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons BY (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
https://creativecommons.org/licenses/by/4.0/legalcode
Previous article Next article
feedback
Top