Cell Structure and Function
Online ISSN : 1347-3700
Print ISSN : 0386-7196
ISSN-L : 0386-7196

This article has now been updated. Please use the final version.

MON2 guides Wntless transport to the Golgi through recycling endosomes
Shen-Bao ZhaoNeta DeanXiao-Dong GaoMorihisa Fujita
Author information
JOURNAL OPEN ACCESS Advance online publication
Supplementary material

Article ID: 20012

Details
Abstract
Endocytic cargos are transported to recycling endosomes (RE) but how these sorting platforms are generated is not well understood. Here we describe our biochemical and live imaging studies of the conserved MON2-DOPEY complex in RE formation. MON2 mainly co-localized with RE marker RAB4B in peripheral dots and perinuclear region. The peripheral RE approached, interacted with, and separated from sorting nexin 3 (SNX3)-positive early endosomes (EE). Membrane-bound DOPEY2 was recruited to RE dependent upon MON2 expression, and showed binding abilities to kinesin and dynein/dynactin motor proteins. MON2-knockout impaired segregation of RE from EE and led to a decreased tubular recycling endosomal network, whereas RE was accumulated at perinuclear regions in DOPEY2-knockout cells. MON2 depletion also impaired intracellular transferrin receptor recycling, as well as retrograde transport of Wntless during its passage through RE before delivery from EE to the Golgi. Together, these data suggest that the MON2 drives separation of RE from EE and is required for efficient transport of endocytic cargo molecules.
Content from these authors
© 2020 The Author(s) CC-BY 4.0 (Submission before October 2016: Copyright © Japan Society for Cell Biology)
feedback
Top