論文ID: 25136
Interleukin-1 receptor type 2 (IL-1R2) functions as a decoy receptor that suppresses IL-1-induced inflammatory signaling. Both membrane-bound IL-1R2 (WT IL-1R2) and its soluble form (sIL-1R2) bind interleukin-1α (IL-1α) at the cell surface or in the extracellular space, thereby inhibiting downstream signaling. However, the anti-inflammatory role of IL-1R2 varies depending on the cellular context and receptor structure. In this study, we generated two IL-1R2 deletion mutants—ΔTM, lacking the transmembrane domain, and ΔTMCP, lacking both the transmembrane and cytoplasmic domains—and compared their functions with those of WT IL-1R2 in HeLa cells. Western blotting, immunoprecipitation, and enzyme-linked immunosorbent assay were used to assess receptor expression, IL-1α binding, and IL-1β-induced interleukin-8 (IL-8) production, respectively. Both ΔTM and ΔTMCP were secreted more efficiently than WT IL-1R2. WT IL-1R2 exhibited weak intracellular interaction with IL-1α, whereas the deletion mutants showed minimal binding. WT IL-1R2 most effectively suppressed IL-1α extracellular release; however, ΔTM and ΔTMCP also reduced secretion. Notably, both deletion mutants suppressed IL-1β-induced IL-8 production more effectively than WT IL-1R2, indicating enhanced extracellular decoy activity. These findings demonstrate that structural modifications of IL-1R2 influence its function as a decoy receptor, and the enhanced inhibitory effects of the deletion mutants on IL-1 signaling provide new insight into the anti-inflammatory potential of soluble IL-1R2 in non-immune cells.
Key words: Interleukin-1, Interleukin-1 receptor type 2, decoy receptor, Transmembrane, Soluble interleukin-1 receptor type 2