Abstract
Saponin models of the plasmodial strand of Physarum polycephalum were constructed to study how Ca2+ and ATP regulate the generation of tension. ATP-induced isometric tension in a saponin model increased with an increase in ATP concentration until maximum tension (0.3-1.7 mg) was reached at about 1 mM. The sensitivity of the model to ATP was heightened three to five times in a basic solution containing an ATP-regenerat-ing system, the maximum tension (0.3-0.6 mg) being reached at 0.2 to 0.3 mM ATP. Contraction of the model also depended on the Ca2+ concentration irrespective of the presence or absence of the ATP-regenerating system. The optimal pCa was 7.0, and tension decreased with a Ca2+ concentration above or below this value. These results indicate that the tension generated in the plasmodial strand of Physarum in vivo may be regulated by ATP and/or Ca2+.