Data Science Journal
Online ISSN : 1683-1470
Proceedings of the 1st WDS Conference in Kyoto 2011
A Data-Driven Method for Selecting Optimal Models Based on Graphical Visualisation of Differences in Sequentially Fitted ROC Model Parameters
K S MwitondiR E MoustafaA S Hadi
著者情報
ジャーナル フリー

2013 年 12 巻 p. WDS247-WDS253

詳細
抄録
Differences in modelling techniques and model performance assessments typically impinge on the quality of knowledge extraction from data. We propose an algorithm for determining optimal patterns in data by separately training and testing three decision tree models in the Pima Indians Diabetes and the Bupa Liver Disorders datasets. Model performance is assessed using ROC curves and the Youden Index. Moving differences between sequential fitted parameters are then extracted, and their respective probability density estimations are used to track their variability using an iterative graphical data visualisation technique developed for this purpose. Our results show that the proposed strategy separates the groups more robustly than the plain ROC/Youden approach, eliminates obscurity, and minimizes over-fitting. Further, the algorithm can easily be understood by non-specialists and demonstrates multi-disciplinary compliance.
著者関連情報

この記事は最新の被引用情報を取得できません。

前の記事 次の記事
feedback
Top