Engineering in Agriculture, Environment and Food
Online ISSN : 1881-8366
ISSN-L : 1881-8366
Assessing wheat yield response to soil compaction using machine learning
— A cross-validated study of soil and nutrient dynamics for precision agriculture —
Ishmael Nartey AMANORRicardo OSPINANoboru NOGUCHI
著者情報
ジャーナル オープンアクセス

2025 年 18 巻 4 号 p. 261-281

詳細
抄録
This study evaluated the impact of soil compaction, expressed as bulk density (BD), on spring wheat using field trials with vibratory plate-compacted subplots (BD: 1.17–1.30 Mg/m3). Key soil properties, nutrient uptake, and yield were measured under varying BD. PLSR with cross-validation identified key predictors and was compared with MLR/LR for yield modeling. Moderate compaction (BD3: 1.24 Mg/m3) optimized nutrient utilization, producing 173.6 % more yield than highly compacted soil (BD1). The Control subplots (BD: 1.17 Mg/m3) yielded 143.4 % more than BD1. Spatial analysis showed that combined phosphorus–calcium–magnesium dynamics explained 97.2 % of yield variation (R2 = 0.972). Nutrient maps supported precision fertilization planning, showing that soil compaction significantly affects wheat productivity through multiple pathways.
著者関連情報
© 2025 Asian Agricultural and Biological Engineering Association

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事
feedback
Top