Journal of the Eastern Asia Society for Transportation Studies
Online ISSN : 1881-1124
ISSN-L : 1341-8521
Travel Demand Analysis and Forecast
A bi-variate Kernel Estimation Model for Travel Time and Activity Duration
Yunkyung BAEJu-Yeon LEEJin-Hyuk CHUNGHyungjin KIM
著者情報
ジャーナル フリー

2010 年 8 巻 p. 615-629

詳細
抄録
The activity duration in activity-based approach typically has been analyzed by various types of regression models, which manifest relationships between socio-economic variables for independent variables and activity duration for dependent variable. Among various approaches, the most frequently adopted model is the hazard-based model, which is a parametric approach because it assumes the probability distribution of the dependent variable prior to model estimation. Since the distribution is not usually aware of the assumption of distribution function prior to estimation is sometimes very strong restriction. Especially, when the true distribution has a unique pattern (for example, bimodality shape), we have difficulty in choosing the relevant probability distribution functions. This study aims to develop the activity duration models using kernel density estimator (hereafter ‘KDE’). KDE is a type of nonparametric estimation methods and can construct the probability distribution including some special features, which parametric methods hardly describe. In addition, relationships between travel time and activity duration are also investigated by the bi-variate KDE using travel diary survey data in Seoul, Korea.
著者関連情報
© 2010 Eastern Asia Society for Transportation Studies
前の記事 次の記事
feedback
Top