Abstract
We investigate the electronic states of a simple model of a lipid bilayer membrane with a siloxane-bond-reinforced surface using first-principles calculations based on density functional theory. Our model is a simple representation of a cerasome, a material that has proved promising as a drug delivery medium. Analyzing the electronic density of states reveals that there is a mid-gap state originating from the Si-C antibonding state. The existence of an antibonding state at mid-gap indicates that we can selectively excite an electron to this state and thus break up the siloxane network. [DOI: 10.1380/ejssnt.2014.112]