Earth, Planets and Space
Online ISSN : 1880-5981
Print ISSN : 1343-8832
Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity
N. BalanY. OtsukaT. TsugawaS. MiyazakiT. OgawaK. Shiokawa
著者情報
ジャーナル フリー

2002 年 54 巻 1 号 p. 71-79

詳細
抄録
Vertical total electron content (GPS-TEC) data obtained from the dual-frequency GPS receiver network (GEONET) in Japan are compared with those calculated using the Sheffield University plasmasphere-ionosphere model (SUPIM). The model is also used to estimate the electron content in the plasmaspheric sections of GPS ray paths for the three seasons of high solar activity (F10.7 = 165) under magnetically quiet conditions. According to the estimates, the plasmaspheric sections of vertical GPS ray paths over Japan at altitudes above the O+ to H+ transition height and above the upper altitude (2500 km) of Faraday rotation contain up to 11 and 9 TEC units (1 TEC unit = 1016 electrons m-2) of free electrons, respectively. The free electrons present above the Faraday rotation altitude can cause propagation errors of up to 4.9 ns in time delay and 1.6 m in range at the GPS L1 (1.57542 GHz) frequency. The plasmaspheric electron content, PEC, changes appreciably with season and latitude and very little with the time of the day. However, the percentage contribution of PEC to GPS-TEC changes most significantly with the time of the day; the contribution varies from a minimum of about 12% during daytime at equinox to a maximum of about 60% at night in winter.
著者関連情報

この記事は最新の被引用情報を取得できません。


この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top