Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Suppression of USP2 in mouse skeletal muscle: a model of oxidative stress in muscle tissue
Masaki FUJIMOTOTomohito IWASAKIMarina HOSOTANI SAITONaoki TAKAHASHIMayuko HASHIMOTOEiki TAKAHASHIHiroshi KITAMURA
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 25-0032

Details
Abstract

Emerging evidence indicates that oxidative stress in skeletal muscle is a prerequisite for sarcopenia in diabetic patients. In this study, we show that ubiquitin-specific protease (USP) 2 mitigates the accumulation of reactive oxygen species (ROS) in mature muscle cells. Treatment with ML364, a canonical USP2 inhibitor, robustly increased mitochondrial ROS in mouse C2C12 myotubes and caused an accompanying increase in the glutathione disulfide (GSSG)/glutathione (GSH) ratio. ML364 also caused mitochondrial damage in C2C12 myotubes, resulting in a reduction in intracellular adenosine triphosphate levels. Correspondingly, under diabetic condition, the muscle-specific Usp2-knockout (msUsp2KO) C57BL/6N mice exhibited a significantly higher lipid peroxide level and GSSG/GSH ratio in skeletal muscle than the control mice. The msUsp2KO mice also exhibited augmented insulin resistance and glucose intolerance, but showed no obvious deterioration in muscle weight or histology relative to the control mice. However, damaged mitochondria in the soleus muscle were more frequently observed in msUsp2KO mice than in the control mice. Together, these data suggest that USP2 mitigates ROS accumulation and subsequent mitochondrial damage in muscle cells in mice.

Content from these authors
© 2025 Japanese Association for Laboratory Animal Science

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top