Funkcialaj Ekvacioj
Print ISSN : 0532-8721
Scaling Limit of Successive Approximations for w′ = –w2
Tetsuya HattoriHiroyuki Ochiai
著者情報
ジャーナル フリー

2006 年 49 巻 2 号 p. 291-319

詳細
抄録
We prove existence of scaling limits of sequences of functions defined by the recursion relation wn+1(x) = –wn(x)2. which is a successive approximation to w′(x) = –w(x)2, a simplest non-linear ordinary differential equation whose solutions have moving singularities. Namely, the sequence approaches the exact solution as n → ∞ in an asymptotically conformal way, wn(x) $\\asymp$ qn $\\bar w$(qnx), for a sequence of numbers {qn} and a function $\\bar w$. We also discuss implication of the results in terms of random sequential bisections of a rod.
著者関連情報
© 2006 by the Division of Functional Equations, The Mathematical Society of Japan
前の記事 次の記事
feedback
Top