Funkcialaj Ekvacioj
Print ISSN : 0532-8721
Initial Values for the Navier-Stokes Equations in Spaces with Weights in Time
Reinhard FarwigYoshikazu GigaPen-Yuan Hsu
著者情報
ジャーナル フリー

2016 年 59 巻 2 号 p. 199-216

詳細
抄録
We consider the nonstationary Navier-Stokes system in a smooth bounded domain Ω ⊂ R3 with initial value u0Lσ2(Ω). It is an important question to determine the optimal initial value condition in order to prove the existence of a unique local strong solution satisfying Serrin's condition. In this paper, we introduce a weighted Serrin condition that yields a necessary and sufficient initial value condition to guarantee the existence of local strong solutions u(·) contained in the weighted Serrin class ∫0Tα||u(τ)||q)sdτ < ∞ with 2/s + 3/q = 1 − 2α, 0 < α < 1/2. Moreover, we prove a restricted weak-strong uniqueness theorem in this Serrin class.
著者関連情報
© 2016 by the Division of Functional Equations, The Mathematical Society of Japan
前の記事 次の記事
feedback
Top