Funkcialaj Ekvacioj
Print ISSN : 0532-8721
Some Extension of Hara-Sugie Stability Condition by Using Critical Delay
Junya Nishiguchi
著者情報
ジャーナル 認証あり

2024 年 67 巻 1 号 p. 61-83

詳細
抄録

The transcendency of the characteristic equation of a linear delay differential equation (DDE) with a delay parameter is a main feature that creates a difference from ordinary differential equations. Here we discuss a method to find the stability condition of the characteristic equation of a planar system of linear DDEs by using the critical delay, which is the threshold delay value dividing the stability and instability regions of the characteristic equation. This method gives a clear understanding of the nature of stability of characteristic equations of some class of linear DDEs, and the obtained results are considered to be an extension of the previous result obtained by Hara and Sugie [Funkcial. Ekvac., 39 (1996), 69-86].

著者関連情報
© 2024 by the Division of Functional Equations, The Mathematical Society of Japan
前の記事 次の記事
feedback
Top