GEOCHEMICAL JOURNAL
Online ISSN : 1880-5973
Print ISSN : 0016-7002
ISSN-L : 0016-7002
Special Issue: Evolution of the solar system: New advances in cosmochemistry and planetary chemistry
Tellurium isotope compositions in acid leach fractions of carbonaceous chondrites
Yusuke FukamiTetsuya Yokoyama
著者情報
ジャーナル フリー
電子付録

2017 年 51 巻 1 号 p. 17-29

詳細
抄録

We present the tellurium (Te) isotope compositions of the acid leachates and residues from three carbonaceous chondrites, namely, Allende, Murchison, and Tagish Lake. Most of the Te isotope compositions in the acid leachates and residues were indistinguishable from that of the terrestrial standard within analytical uncertainties, indicating a homogeneous distribution of Te isotopes in the solar nebula. Previous studies have reported nucleosynthetic isotope anomalies for Sr, Mo, W, and Os in the leachates and residues from the same meteorites. This suggests that the anomalous Te isotope signatures within the carbonaceous chondrites, including presolar phases, have presumably been nearly completely erased via a temperature-controlled nebular processes that acted on the relatively volatile elements before the onset of parent body formation. In contrast, the final residue of the Allende chrondrite displays a small but resolvable Te isotope anomaly. We performed mixing calculations to reproduce the observed Te isotopic pattern for the Allende final residue, which can be explained by the depletion of a theoretical r-process component. This result suggests that our Allende final residue was depleted in presolar nanodiamonds, which were enriched in the theoretical r-process component, because nanodiamonds are strongly acid resistant and can survive the leaching steps used in this study. The presolar SiC is not responsible for the observed r-process depletion. The discrepancy might instead be attributed to the existence of another presolar phase, including glassy carbon, in the final Allende residue.

著者関連情報
© 2017 by The Geochemical Society of Japan
前の記事 次の記事
feedback
Top