情報地質
Online ISSN : 1347-541X
Print ISSN : 0388-502X
ISSN-L : 0388-502X
ARTIFICIAL NEURAL NETWORKS AND SPATIAL ESTIMATION OF CHERNOBYL FALLOUT
Mikhail KanevskyRafael ArutyunyanLeonid BolshovVasily DemyanovMichel Maignan
著者情報
ジャーナル フリー

1996 年 7 巻 1-2 号 p. 5-11

詳細
抄録
The present work continues advanced spatial data analysis of surface contamination by radionuclides after severe nuclear accident on Chernobyl NPP. Feedforward neural networks are used for the Cs137 and Sr90 radionuclides prediction mapping and spatial estimations. Neural networks are used to model complex trends over the entire region. Residuals are analyzed with the help of geostatistical approach within the framework of NNRK (neural network residual kriging) model. Another set of data is used to validate obtained results.
著者関連情報
© Japan Society of Geoinformatics
前の記事 次の記事
feedback
Top