Genome Informatics
Online ISSN : 2185-842X
Print ISSN : 0919-9454
ISSN-L : 0919-9454
ニューラルネットワークにおける蛋白質二次構造予測の二次構造分類法への依性
笹川 文義田嶋 耕治
著者情報
ジャーナル フリー

1992 年 3 巻 p. 89-92

詳細
抄録
We study the prediction of globular protein secondary structures by a neural network and super-computer. The application of a neural network with a modular architecture to prediction of protein secondary structures (α-helix, β-sheet and coil) is presented. Each module is a three layer neural network. We compare the results from the neural network with a modular architecture and with a simple three layer structure. The prediction accuracy by a neural network with a modular architecture is higher than of the ordinary neural network. The 3, 4 and 8 state classification scheme of secondary structures are considered in the ordinary three layer neural network. The percentage of correct prediction depends on these state classification scheme.
著者関連情報
© 日本バイオインフォマティクス学会
前の記事 次の記事
feedback
Top