The Horticulture Journal
Online ISSN : 2189-0110
Print ISSN : 2189-0102
ISSN-L : 2189-0102

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Efficient Transient Expression for Functional Analysis in Fruit Using the Tsukuba System Vector
Masafumi OmoriYosuke FujiwaraHisayo YamaneKenji MiuraRyutaro Tao
著者情報
ジャーナル オープンアクセス 早期公開
電子付録

論文ID: QH-062

この記事には本公開記事があります。
詳細
抄録

Evaluating the function of genes expressed in fruit tissues of fruit tree species using a genetic transformation approach is a long process because the trees are generally recalcitrant to genetic transformation and cannot bear fruit during their long juvenile phases. Transient gene expression in fruit enables the functional analysis of genes associated with fruit traits, which may accelerate the study of fruit physiology. Here, by using the recently developed “Tsukuba system”, we successfully established an efficient transient expression system in harvested fruit tissues. The “Tsukuba system” utilizes a combination of the geminiviral replication system and a double terminator, which ensures sufficient levels of transgene expression. We used blueberry fruit as a model to characterize the applicability of this system for transient expression in fruit tissue. The pTKB3-EGFP vector was introduced by agroinfiltration into the fruit tissues of several blueberry cultivars. We found that transient GFP fluorescence in fruit peaked 4–6 days after agroinfiltration. Agrobacterium suspensions were easily injected into soft, mature fruit, and GFP was strongly expressed; however, hard, immature fruit were not penetrable by Agrobacterium suspensions, and GFP was rarely detected. We then tested the applicability of the developed system to other fruit tree species: six families, 17 species, and 26 cultivars. GFP fluorescence was detected in all species, except for Japanese apricot. In blueberry, bilberry, sweet cherry, apricot, and satsuma mandarin, GFP was highly expressed and observed in a large proportion of the flesh. In kiwifruit, hardy kiwifruits, persimmon, peach, apple, European pear, and grape, GFP fluorescence was limited to certain parts of the fruits. Finally, transient VcMYBA1 overexpression in blueberry was tested as a model for gene functional analysis in fruit. Transient VcMYBA1 overexpression induced red pigmentation in the flesh, suggesting that VcMYBA1 expression caused anthocyanin accumulation. This study provides a technical basis for the rapid evaluation of genes expressed in fruit, which will be useful for gene function evaluation studies in fruit crops with long juvenile phases.

著者関連情報
© 2023 The Japanese Society for Horticultural Science (JSHS), All rights reserved.
feedback
Top