Hosokawa Powder Technology Foundation ANNUAL REPORT
Online ISSN : 2189-4663
ISSN-L : 2189-4663
Research Grant Report
Developing Microparticles Containing High Molecular Weight Hyaluronic Acid for Inhalation
Kaori FUKUSHIGE
Author information
RESEARCH REPORT / TECHNICAL REPORT OPEN ACCESS

2020 Volume 28 Pages 74-81

Details
Abstract

The liposome-protamine-DNA complex (LPD) is an effective cationic carrier of various nucleic acid constructs such as plasmid DNA and small interfering RNA (siRNA). Hyaluronic acid coated on LPD (LPDH) reduces cytotoxicity and maintains the silencing effect of LPD-encapsulated siRNA. Herein, we aim to develop LPD- or LPDH-containing spray-freeze-dried particles (SFDPs) for therapeutic delivery of siRNA to the lungs. LPD- or LPDH-containing SFDPs (LPD- or LPDH-SFDPs) were synthesized and their structure and function as gene carriers were evaluated using physical and biological methods. The particle size of LPDH, but not of LPD, was constant after re-dispersal from the SFDPs and the amount of siRNA encapsulated in LPDH was larger than that in LPD after re-dispersal from the SFDPs. The in vitro pulmonary inhalation properties of LPDH-SFDPs and LPD-SFDPs were almost the same. The cytotoxicity of LPDH-SFDPs in human umbilical vein endothelial cells (HUVEC) was greatly decreased compared with that of LPD-SFDPs. In addition, Bcl-2 siRNA in LPDH-SFDPs had a significant gene silencing effect in human lung cancer cells (A549), whereas Bcl-2 siRNA in LPD-SFDPs had little effect. These results indicate that compared with LPD, LPDH is more useful for developing SFDPs for siRNA pulmonary inhalation.

Graphical Abstract Fullsize Image
Content from these authors
This article is licensed under a Creative Commons [Attribution 2.1 JP] license.
https://creativecommons.org/licenses/by/2.1/jp/
Previous article Next article
feedback
Top