IEEJ Transactions on Fundamentals and Materials
Online ISSN : 1347-5533
Print ISSN : 0385-4205
ISSN-L : 0385-4205
Paper
IR-LAS Measurements of a Pulsed Xenon Discharge Plasma
Masafumi JinnoRyota WadaHideki MotomuraMasaharu Aono
Author information
JOURNAL FREE ACCESS

2005 Volume 125 Issue 8 Pages 669-674

Details
Abstract

As a first step to understand the processes taking place in a pulsed xenon discharge, the temporal behavior of the radial metastable atom distribution in a xenon lamp was measured by IR laser absorption spectroscopy. During the first 10μs after starting the discharge, high electron density and the depletion of the ground state atoms at the center of the discharge brought about an almost flat distribution of the metastable atoms within the half-radius area. Following that, the metastable atom density became higher at the center than outside because of recombination between electrons and ions. After the metastable density increase and following voltage cut off, the metastable density decreases again. Considering the diffusion equation alongside these results, it becomes clear that the decrease of the metastable density is caused by quenching to the resonace level from the metastable level or three-body collisions forming excimers.

Content from these authors
© 2005 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top