IEEJ Transactions on Fundamentals and Materials
Online ISSN : 1347-5533
Print ISSN : 0385-4205
ISSN-L : 0385-4205
Paper
Decomposition Characteristics of Acetone in a DC Corona Discharge at Atmospheric Pressure
Takahiro SakamotoKohki SatohHidenori Itoh
Author information
JOURNAL FREE ACCESS

2008 Volume 128 Issue 6 Pages 407-414

Details
Abstract

Decomposition characteristics of acetone in a DC corona discharge generated between a multi-needle and a plane electrodes in nitrogen-oxygen mixtures at atmospheric pressure are investigated mainly by infrared absorption spectroscopy in this work. It is found that CO2, CO, CH4, HCHO, HCOOH and HCN are the by-products of acetone in the corona discharge, and that CO, CH4, HCHO, HCOOH and HCN are intermediate products, which tend to be decomposed in the corona discharge. CO2 is found to be the major and end-product. It is also found that acetone is chiefly inverted to CO2 via CO at high oxygen concentration (20%) and via CO and CH4 at relatively low oxygen concentration (0.2%), in addition to the direct conversion from acetone to CO2. As the oxygen concentration increases, the percentages of carbon atoms contained in deposit on the plane electrode and the wall of the discharge chamber increases. Further, the decomposition process of acetone is deduced from the examination of rate constants for the reactions in the gaseous phase.

Content from these authors
© 2008 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top