Abstract
The present study investigated whole-body specific absorption rate of a human body in a vehicle cabin for plane-wave exposure. The rationale for this investigation is that fields in the vehicle without human have been enhanced in particular frequency region due to standing waves, and thus power absorption in the human body is of interest. For our computational results, the whole-body average specific absorption rate of the human in the vehicle was found to be 60% smaller than that in free space. The reason for this upset is that the standing wave over the vehicle cabin was suppressed due to power absorption by the human.