電気学会論文誌A(基礎・材料・共通部門誌)
Online ISSN : 1347-5533
Print ISSN : 0385-4205
ISSN-L : 0385-4205
特集解説
論文データのMaterials Informaticsに向けた自然言語処理
―超電導材料開発を例に―
桂 ゆかり
著者情報
ジャーナル 認証あり

2024 年 144 巻 9 号 p. 350-359

詳細
抄録

As an emerging style of materials science, we discussed the basic and recent natural language processing technologies, that can be used to collect large experimental dataset for materials informatics. We introduce the classical text-mining for the development of material database, and the approaches to accelerate the automatic data extraction by using recent large language models (LLM). Then we demonstrate how to use the commercial large language models including ChatGPT, by directly asking the LLM how to improve the critical current properties of MgB2 superconducting wires. By comparing LLM-generated outputs, we analyze word selection and the occurrence of hallucination. Finally, we demonstrate an example to use LLMs effectively, to get inspirations for the development of the best superconducting wire in the history.

著者関連情報
© 2024 電気学会
前の記事 次の記事
feedback
Top