電気学会論文誌D(産業応用部門誌)
Online ISSN : 1348-8163
Print ISSN : 0913-6339
ISSN-L : 0913-6339
論文
分散強化学習による下水送水系の制御
青木 圭木村 元長岩 明弘小林 重信
著者情報
ジャーナル フリー

2003 年 123 巻 4 号 p. 462-469

詳細
抄録
In this paper, we propose a new simulation-based Distributed Reinforcement Learning approach that solves large planning problems under uncertain environment. The proposed method is a distributed state-action representation for softening an interaction and reward design for making agents cooperate. We apply it to real sewerage control systems, as the problem with uncertainty. Simulation results show it finds good control rules, which can cope with various situations, by dealing with the uncertainty included in real data directly on a simulator based on real systems.
著者関連情報
© 電気学会 2003
前の記事 次の記事
feedback
Top