Abstract
The superconducting magnetic levitation railway system (MAGLEV) under development in Japan uses a pulse-width-modulation (PWM) inverter for driving a linear synchronous motor (LSM). The inverter output voltage contains non-negligible harmonics which cause harmonic resonances in the LSM system, and therefore harmonics of the output voltage have been analyzed in order to control such harmonic resonances.
This paper applies a third-harmonic injection method to the inverter for the purpose of enhancing the output voltage without changing the circuit configuration. It performs harmonic analysis of the output voltage of the inverter based on the third-harmonic injection. Validity of the harmonic analysis is verified by computer simulation.