Abstract
We constructed open MRI superconducting magnets with an iron yoke that generates a 0.7T highly uniform magnetic field. A program that compensates for the error field of those magnets was developed that uses linear programming to achieve an optimal arrangement of a large number of small iron shims. Since additional homogeneity compensation near the target value becomes difficult, we also used nonlinear programming. We must evaluate all shim magnetizations precisely by making a 3D finite element shim model. Since, it is impossible to make such shims in a large magnet model, we describe a fast calculation method of shim magnetizations without that model. Homogeneity of 0.35ppm (Vrms) at 35cm Diameter Spherical Volume (DSV), which is the top value of an open MRI magnet, is obtained by applying these methods. The number of correction times were reduced by half of initial manufactured magnets.