IEEJ Transactions on Industry Applications
Online ISSN : 1348-8163
Print ISSN : 0913-6339
ISSN-L : 0913-6339
Paper
Modeling and Filter Design for Overvoltage Mitigation in a Motor Drive System with a Long Cable
Itaru MatsumuraHirofumi Akagi
Author information
JOURNAL FREE ACCESS

2009 Volume 129 Issue 8 Pages 844-851

Details
Abstract
This paper presents an intensive discussion on modeling an adjustable-speed motor drive system consisting of a voltage-source PWM inverter and an induction motor that are connected by a three-phase symmetric, long cable with a grounding wire lead. Then, it describes a design procedure for a parallel-connected R-L filter in each phase that can mitigate the overvoltage appearing at the motor terminals. The model developed in this paper focuses on the inherent “ringing frequency” of the cable, where the ringing frequency is inversely proportional to cable length. When no filter is used, the so-called “impedance mismatch” causes the reflection of a voltage-traveling wave at both the inverter and the motor terminals. As a result, the impedance mismatch generates an overvoltage that may reach twice the inverter dc-link voltage at the motor terminals. The overvoltage may damage the motor-winding insulation, and may cause it to breakdown. Although an R-L filter installed on the ac side of the inverter can reduce the overvoltage, it would be difficult to design the filter effectively for long cables of different lengths. The effectiveness and validity of the simple design procedure described in this paper are confirmed on a 400-V, 15-kW experimental system with either a 100-m or 200-m-long cable.
Content from these authors
© 2009 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top